Newton’s Law of Gravity physics




The sun’s force on the planets obeys an inverse square law.

Kepler’s laws were a beautifully simple explanation of what the

planets did, but they didn’t address why they moved as they did.
Did the sun exert a force that pulled a planet toward the center of
its orbit, or, as suggested by Descartes, were the planets circulating
in a whirlpool of some unknown liquid? Kepler, working in the
Aristotelian tradition, hypothesized not just an inward force exerted
by the sun on the planet, but also a second force in the direction
of motion to keep the planet from slowing down. Some speculated
that the sun attracted the planets magnetically.

Once Newton had formulated his laws of motion and taught

e / An ellipse can be con-
structed by tying a string to two
pins and drawing like this with the
pencil stretching the string taut.
Each pin constitutes one focus of
the ellipse.

them to some of his friends, they began trying to connect them
to Kepler’s laws. It was clear now that an inward force would be
needed to bend the planets’ paths. This force was presumably an
attraction between the sun and each planet. (Although the sun does
accelerate in response to the attractions of the planets, its mass is so
great that the e ect had never been detected by the prenewtonian
astronomers.) Since the outer planets were moving slowly along
more gently curving paths than the inner planets, their accelerations
were apparently less. This could be explained if the sun’s force was
determined by distance, becoming weaker for the farther planets.
Physicists were also familiar with the noncontact forces of electricity
and magnetism, and knew that they fell o  rapidly with distance,
so this made sense.

In the approximation of a circular orbit, the magnitude of the

f / If the time interval taken
by the planet to move from P to Q
is equal to the time interval from
R to S, then according to Kepler’s
equal-area law, the two shaded
areas are equal. The planet
is moving faster during interval
RS than it did during PQ, which
Newton later determined was due
to the sun’s gravitational force
accelerating it. The equal-area
law predicts exactly how much it
will speed up.

sun’s force on the planet would have to be
[1] F = ma = mv2/r .
Now although this equation has the magnitude, v, of the velocity
vector in it, what Newton expected was that there would be a more
fundamental underlying equation for the force of the sun on a planet,
and that that equation would involve the distance, r, from the sun
to the object, but not the object’s speed, v — motion doesn’t make
objects lighter or heavier.

self-check A

If eq. [1] really was generally applicable, what would happen to an
object released at rest in some empty region of the solar system?